Amicable Numbers and the Bilinear Diophantine Equation*

By Elvin J. Lee

1. The Bilinear Diophantine Equation. The integer solution of

$$
\begin{equation*}
a x y+b x+c y=d \tag{1}
\end{equation*}
$$

may be reduced to a factorization. Multiplying (1) by a, adding $b c$ to both sides and factoring results in

$$
\begin{equation*}
(a x+c)(a y+b)=a d+b c . \tag{2}
\end{equation*}
$$

If n is a factor of $a d+b c$ and a divides $n-c$, the integer solution of (1) is

$$
\begin{equation*}
x=(n-c) / a, \quad y=(m-b) / a \quad \text { where } \quad m n=a d+b c . \tag{3}
\end{equation*}
$$

2. Amicable Numbers. Method I. An amicable pair, $\left(n_{1}, n_{2}\right)$ is defined by

$$
\begin{equation*}
\sigma\left(n_{1}\right)=\sigma\left(n_{2}\right)=n_{1}+n_{2} \tag{4}
\end{equation*}
$$

where σ denotes the divisor sum function [1]. If we let

$$
\begin{equation*}
n_{1}=A p q \quad \text { and } \quad n_{2}=B r \tag{5}
\end{equation*}
$$

where p, q are primes relatively prime to some number A, and r is a prime relatively prime to a number B,(4) gives
(6) $\quad S(p+1)(q+1)=T(r+1)=A p q+B r \quad$ where $S=\sigma(A), \quad T=\sigma(B)$.

Solving for r and eliminating r gives

$$
\begin{equation*}
r=S(p+1)(q+1) / T-1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
[A T-S(T-B)] p q-S(T-B)(p+q)=B T+S(T-B) \tag{8}
\end{equation*}
$$

Substituting in (2) we obtain

$$
\begin{equation*}
a d+b c=T[A B T+(A-B)(T-B) S] . \tag{9}
\end{equation*}
$$

Our procedure now is to find all factor pairs, M, N, of $T[A B T+(A-B)(T-B) S]$ such that $M N=T[A B T+(A-B)(T-B) S]$. For any such pair we solve the linear equations,

$$
\begin{align*}
{[A T-S(T-B)] p } & =N+S(T-B) \tag{10a}\\
{[A T-S(T-B)] q } & =M+S(T-B) \tag{10b}
\end{align*}
$$

given by (3) observing that (10b) has a solution if and only if (10a) has a solution

[^0]and requiring $N<M$ to avoid duplication in view of p, q symmetry of (8). All p, q thus found are checked for primality by a sieve algorithm. When p and q are both primes, r is computed by (7) and checked for primality.

The procedure is programmed in fixed-point arithmetic in order to find quickly the rather small number of integer solutions of (7) to be checked for primality. A and B are initially selected such that $A / S+B / T>1$.

Limitations on fixed-point word size (47 bits for the 1604) made a systematic and exhaustive search impossible. The procedure was also programmed in floating-point arithmetic (75 bits), but slow running speed limited usefulness of this version. Another fixed-point version utilizing a preliminary extraction of common factors at appropriate stages of the calculations seems promising in extending the search to larger numbers, especially since faster machines are already available and still faster machines will be in the near future.

Method II. This method is less general than the first method described herein but may be of use when computer word-size limitations vitiate Method I. Its general plan is to eliminate a suitable variable from a specific form of Eqs. (4) and to derive inequalities bounding remaining variables in the resulting single equation. The following example illustrates this technique:
(11) Let $n_{1}=E p q r$ and $n_{2}=E s$, where p, q, r, s are primes relatively prime to E. Then denoting $\sigma(E)$ by S, we have

$$
\begin{equation*}
S(p+1)(q+1)(r+1)=S(s+1)=E(p q r+s) \tag{12}
\end{equation*}
$$

Eliminating s and solving for r there result

$$
\begin{equation*}
s=(p+1)(q+1)(r+1)-1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
r=\frac{(S-E)(p+1)(q+1)+E}{E p q-(S-E)(p+1)(q+1)} \tag{14}
\end{equation*}
$$

But $S>E$, so from (14)

$$
\begin{equation*}
q>\frac{(S-E)(p+1)}{E p-(S-E)(p+1)} \tag{15}
\end{equation*}
$$

But $q>0$, so

$$
\begin{equation*}
p>(S-E) /(2 E-S) \tag{16}
\end{equation*}
$$

and since $p>0$

$$
\begin{equation*}
S<2 E \tag{17}
\end{equation*}
$$

From symmetry and since p, q, r are assumed distinct and we are interested ultimately only in prime p, q, r, we take

$$
\begin{equation*}
r>q+1 \tag{18a}
\end{equation*}
$$

and

$$
\begin{equation*}
q>p+1 \tag{18b}
\end{equation*}
$$

(18a) and (14) give an inequality quadratic in q from which, solving for q,

$$
\begin{equation*}
q<\frac{2(S-E)(p+1)}{E p-(S-E)(p+1)} \tag{19}
\end{equation*}
$$

From (18b) and (19)

$$
\begin{equation*}
p<3(S-E) /(2 E-S) \tag{20}
\end{equation*}
$$

The procedure treats E as an arbitrary input datum subject to (17). In practice it is chosen to obey additional criteria depending on what is being sought. Then (16) and (20) bound p, and (15) and (19) bound q in a ($p_{i}, q_{i j}$) domain. The detailed course of the procedure at this point may vary depending on machine and programming limitations. Suffice it to say that as many prime p, q, r as feasible are found using (14)-(20) and a combination of table look-up and sieve routines.

Routines for many specific forms of (4) were programmed and run with varying degrees of success. It should be noted here that amicable pairs are impossible for some forms; consider, for example, the form $n_{1}=E p q, n_{2}=E r^{2}$. For this form $(p+1)(q+1)=r^{2}+r+1$, which is odd for any r. But $(p+1)(q+1)$ cannot be odd if p and q are distinct primes.

The 264 new pairs of amicable numbers found are listed in Table I according to Escott's classification [2]. Escott [2], Poulet [3] and García [4] list all known pairs prior to those here given.*

In Table 1 an amicable pair, n_{1}, n_{2} is given simply as n_{1}, n_{2} unless n_{1} and n_{2} have a greatest common divisor, $u>1$, in which case the format is u, n_{1}, n_{2}. All numbers are in fully decomposed form with E denoting exponentiation, e.g., pair 2 in conventional notation is

$$
\left\{\begin{array}{c}
2^{3} \cdot 19 \cdot 83 \cdot 137 \cdot 218651 \\
2^{3} \cdot 19 \cdot 137 \cdot 18366767
\end{array}\right\}
$$

Table 1
TYPE EPQ,ER
1 2E8.1039,503.1047311,527845247
TYPE EPQ,ERS
3 2E2.11.23,131.36988691,3041. 1605031
5 2E2.13.17,233.351287,5507.14923
7 2E5.67,547.151992179,24659. 3377603
9 2E5.67,719.6608209,2099.2265671
11 2E5.79,167.21209129,2659.1339523
13 2E5.107,83.3333263,1061.263647
15 2E11,2351.70955551,16127.1034767
17 3.5.7.11,233.1019479,1091.218459
19 3E2.5.13.19,31.184337,263.22343
21 3E4.7.11E2.19E2.127,359.144779,911.57149

[^1]Table 1-Continued
TYPE EPQR,ES
22 2E7,149.1151.3499,604799999 24 2E8,257.33151.4259903, 36435879051263

26 2E8,383.809.14083,4380687359

TYPE EPQR,EST
27 2.5.13,19.83.129011,5039.43003
29 2.5.13,19.89.70979,1039.122849
31 2.5.17,11.89.227629,1699.144611
33 2.5.19,11.41.34154399,9629.1787519
35 2.5.19,11.61.538649,139.2862539
37 2.5E2,11.137.38149,19.3158819
39 2.5E3,7.4049.143509,359.12915899
41 2.7.17,5.47.33195287,1181.8088191
43 2E2.19.37,41.1109.11369,11.44172449
45 2E2.23.53,17.2437.5179,11.18943259
47 2E3.29,17.1217.20939,251.1821779
49 2E3.29,19.107.233159,647.777199
51 2E5,37.2111.109661,223.39290327
53 2E5,47.739.383261,109.123758783
55 2E5,59.1427.168527,71.200548319
57 2E6,67.19963.577151,1151.680133551
59 2E6,67.26783.69061,1151.109187021
61 2E6,89.22343.184999,223.
1660837499
63 2E6,113.4567.17351,151.59447951
65 2E7,271.5939.22536079,251. 144488467199
67 2E5,43.151.104579,479.1457147
69 2E5,43.269.1063,251.50159
71 2E5,53.127.349,479.5039
73 2E5,59.71.9533,1259.32687
75 2E5,59.79.56099,439.611999
77 2E5,59.83.1619,449.18143
79 2E5,59.167.857,131.65519
81 2E5,59.1451.57119,71.69115199
83 2E5,59.2207.3947,71.7264319
85 2E5,67.383.11027,71.3999487
87 2E5,71.103.14879,127.870479
89 2E5,73.971.17959,59.21530447
91 2E6,101.239.35339,599.1441871
93 2E6,101.461.991,373.124991

TYPE EPQR,ESTU

95 2.5E2,17.349.12967,19.29.136163
97 2.5.17,11.101.3659,17.719.6221
99 2E2.11,17.107.1038311,37.4751. 11177
101 2E2.11,19.1259.2969,29.149.16631
103 2E2.13,17.1399.51479,19.103.623699
105 2E3,11.53.29818669,41.1109.414467
107 2E3,11.103.1732799,31.607.11149

5 PAIRS
23 2E4,17.137.9319,23150879
25 2E7,199.359.20411,1469663999

68 PAIRS

28 2.5.13,17.179.5381,2339.7451
30 2.5.13,17.197.2339,1619.5147
32 2.5.17,11.101.1889,1427.1619
34 2.5.17,13.41.23459,3331.4139
36 2.5.17,13.47.2549,359.4759
38 2.5.19,11.47.27739,359.44383
40 2.5.19,11.59.15199,151.71999
42 2.5E2,7.149.281,179.1879
44 2.5E2,7.149.12671,109.138239
46 2.5E2,7.1499.1667,71.277999
48 2.5E2,11.23.599,59.2879
50 2.5E2,13.17.3499,59.14699
52 2.7.17,5.47.173501,1223.40823
54 2.7.17,5.101.797,113.4283
56 2E2.11,17.29.16631,263.34019
58 2E2.53,5.17.62327,251.26711
60 2E3,29.47.9631,13.990719
62 2E5,37.269.13999,797.133823
64 2E5,37.271.1637,1481.11423
66 2E5,37.383.599,1709.5119
68 2E5,43.263.9539,211.522719
70 2E5,47.167.1619,251.51839
72 2E5,53.127.76207,197.2660351
74 2E5,59.71.14783,1187.53759
76 2E5,59.83.571,1637.1759
78 2E5,59.109.1559,199.51479
80 2E5,59.317.2591,89.549503
82 2E5,59.1481.31799,71.39272999
84 2E5,61.89.45343,239.1054247
86 2E5,71.89.839,191.28349
88 2E5,71.131.1567,107.137983
90 2E5,97.127.701,83.104831
92 2E6,101.311.1511,503.95471
94 2E6,101.691.2351,251.658783

56 PAIRS

96 2.5,7.89.359,23.59.179
98 2.5,7.131.2339,19.53.2287
100 2.5,7.163.449,19.59.491
102 2.5,11.41.239,17.29.223
104 2E2,5.17.797201,41.73.27701
106 2E2,5.41.105071,23.43.25073
108 2E3,11.59.173,53.137.1399

109 2E3,11.139.223439,31.251.46549
111 2E3,11.227.114847,31.151.64601
113 2E3,13.1061.102499,19.353.215249
115 2E3,13.2789.146383,19.293.972407
117 2E3,13.9371.7391159,29.47. 673457861
119 2E3,13.9521.556159,29.47.51486511
121 2E3,13.11807.6742199,19.271. 204883559
123 2E3,17.43.639007,23.151.138731
125 2E4,23.7649.128393,53.449.970087
127 2E4,23.13967.1197649,59.239. 27881291
129 2E4,29.1231.121787,59.83.893111
131 2E4,29.3583.335213,41.191.4469519
133 2E3,17.59.5641,19.433.701
135 2E3,17.263.34949,19.59.138401
137 2E3,17.601.3659,19.53.36721
139 2E3,17.719.1889,19.53.22679
141 2E3,19.167.251,23.41.839
143 2E4,29.659.11243,59.89.41227
145 2E4,37.107.21559,43.227.819
147 3E2.5,7.19.2663,11.73.479
149 3E3.5,7.89.3347,17.29.4463
TYPE EPQRS,ET
151 2E2.11,13.47.6829.421079, 1932656140799

153 2E4,17:163.1013.3607,10799927423
154 2E4,17.137.9649.269131,6451255519199
$1552 \mathrm{E} 4,17.137 .14843 .25013,922328614943$
156 3E2.5.13,11.23.79.1051,24238079
157 3E2.5.13,11.19.211.14699,747935999

TYPE EPQRS,ETU

158 2E2.11,13.53.8329.84061,461. 1145841479
160 2E2.13,17.23.467.36529,53. 136768319
162 2E3,13.17.449.3387971,28619. 13424039
164 2E3,13.17.479.92177,6803.1638719
166 2E3,13.19.131.69191,2239.1141667
168 2E3,13.19.1993.26099,149.97147679
170 2E3,13.23.59.4594127,20327. 4556159
172 2E3,17.29.37.18311,71.5218919
174 2E3,19.23.29.47189,197.3431999 176 2E3,19.23.223.8861,31.29776319

177 2.5,11.23.79.7109,17.79.113759
179 2.5,13.23.139.63737,11.5879.42491
181 2.5,17.19.71.90149,11.647.300499
$1832.5 \mathrm{E} 2,13.59 .725999,19.307 .98999$

110 2E3,11.67.164429,53.101.24359
112 2E3,11.71.11689,59.83.2003
114 2E3,11.79.995651,53.83.210719
116 2E3,11.163.191,31.91.11807
118 2E3,11.211.503,47.83.317
120 2E3,11.499.29429,29.149.39239
122 2E3,11.1877.2447,31.101.16901
124 2E3,13.89.55579,29.97.23819
126 2E3,13.431.1511,23.107.3527
128 2E3,13.863.6029,23.89.33767
130 2E3,17.47.2239,23.167.479
132 2E3,17.53.1039,23.179.233
134 2E3,17.79.769,29.43.839
136 2E3,17.521.24659,19.53.214541
138 2E3,17.659.2441,19.53.26861
140 2E3,19.71.9719,23.47.12149
142 2E4,29.593.13137,53.109.39383
144 2E4,29.661.10799,59.89.39719
146 2E4,47.107.3767,53.71.5023
148 3E3.5,7.53.467,17.47.233
150 3E3.5,11.17.227,23.37.53

7 PAIRS

152 3.5.7,11.13.37.3779,24131519

TABLE 1-Continued

185 2.7,5.11.97.26212247,23.6803. 1132627
187 2.7.11,13.191.5939,19.307.2591
189 2E2,5.13.167.179657,53.1511.31051
191 2E2.17,23.41.1289.9043,13.89. 9333407
193 2E2,5.17.461.409867,37.107.4983131 194 2E2,5.23.83.227,47.71.797
195 2E2.19,17.97.773.7789,11.113.7774829
196 2E3,17.19.7699.1261459,47.769.94609499
197 2E2,5.17.467.36061,37.107.444131
198 2E2,5.23.31.123191,53.191.54751
199 2E2.19,23.37.569.121469,11.151.34618949
TYPE EPQRS,ETUVW 2 PAIRS
200
201
$2.17,5.23 .1223 .72901,7.11 .67 .1968353$
2
200
201
$2.17,5.23 .1223 .72901,7.11 .67 .1968353$
2

TYPE EPQRST,EUVWX

202 2E2,19.29.41.107.1667,13.17.59.300239

TYPE MISCELLANEOUS
203 2E5.61.15472687,2E9.2351.25117
205 2E8.239.1019.1373,2E7.674029439
207 2E3.13.1913.5417,2E5.179.192037
209 2E3.23.157.3477869,2E5.14051.
130349
211 2E3.17.8161.14621,2E5.43.11624489
213 2E3.23.173.29021,2E5.859.189407
215 2E4.29.83.63377,2E5.557.140839
217 2E4.29.9091.69341,2E6.179. 25648531
219 2E4.43.113.51461,2E9.1367.5717
221 2Е5.17.1949.4493,2E3.41.15773939
223 2E5.67.1489.2014379,2E7.239. 210099833
225 2E5.83.2729.4283,2E11.293.51407
227 2E3.17.4157.16433,2E5.53.241.22409
229 2E3.17.7589.7457561,2E5.53.229. 19531709
231 2E4.53.109.14699,2E5.59.461.1549
233 2E4.61.139.440529893,2E5.41. 25171.1779709

235 2E2,13E2.5.743.23089571, 53.35023 .9973133

237 2E3,13E2.383.2309,23.239.28181
239 2E2,29E2.14207.288413,5.17. 311.105922711

241 2E3,19E2.9338111,13.863.294131
243 2E3.37,17E2.59.315461,5810810039
245 2,5E2.13.1542239,5.11.59.154937
247 2,5E2.23.397.233279,5.7.11159. 128951

186 2.7,11.13.29.47,19.23.503
188 2.7.11,17.149.3079,19.53.7699
190 2.11,5.23.43.67,7.197.271
192 2E2,5.23.263.587,41.47.11087

\qquad

1 PAIR

62 PAIRS
204 2E5.47.76961,2E6.431.4241
206 2E5.199.464819,2E6.53.853999
208 2E5.71.3245579,2E8.269.106703
210 2E5.61.4861999,2E9.4079.4549
212 2E5.619.967,2E9.83.439
214 2E3.29.109.433,2E4.19.34649
216 2E3.13.521.569,2E5.449.2203
218 2E3.13.653.2621,2E5.229.24851
220 2E3.17.137.293,2E5.83.2069
222 2E4.13.41.2609,2E3.587.5393
224 2E4.29.257.2539,2E6.773.6199
226 2E5.13.193.709,2E3.283.28517
228 2E5.61.163.2539,2E6.1301.9839
230 2Е3.29.61.569,2E4.37.89.149
232 2E3.53.61.433,2E4.29.41.557
234 2E3,11E2.67.71.113.5711
236 2,5E2.59.503,5.11.13.929
238 2,5E2.7.59.71,5.47.3719
240 2,5E2.13.89.167,5.11.91139
242 2,7E2.13.31.313,7.5.167047
244 2,7E2.13.107.967,7.5.37.45737
246 2.11,5E2.347.5939,5.929.11483
248 2.13,5E2.37.21059,5.269.15313

Acknowledgment. The author expresses his appreciation of the encouragement given him by members of the Solid State Division of ORNL.

Mathematics Division \dagger

Oak Ridge National Laboratory

1. O. Ore, Number Theory and its History, McGraw-Hill, New York, 1948, p. 89. MR 10, 100.
2. E. B. Escott, "Amicable numbers," Scripta Math., v. 12, 1946, pp. 61-72. MR 8, 135.
3. P. Poulet, " 43 new couples of amicable numbers," Scripta Math., v. 14, 1948, p. 77.
4. M. Garcia, "New amicable pairs," Scripta Math., v. 23, 1957, pp. 167-171. MR 20 \#5158.
\dagger Formerly of Solid State Division.

[^0]: Received March 13, 1967. Revised April 17, 1967.

 * Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.

[^1]: ** While this paper was in preparation, it was brought to the author's attention that nine new pairs had been found by Alanen, Ore and Stemple (this journal, April 1967).

